Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 606(7913): 375-381, 2022 06.
Article in English | MEDLINE | ID: covidwho-1890198

ABSTRACT

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Subject(s)
Anti-HIV Agents , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , Double-Blind Method , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/isolation & purification , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
2.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
3.
J Infect Dis ; 224(6): 949-955, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429240

ABSTRACT

BACKGROUND: Early in the coronavirus disease 2019 (COVID-19) pandemic, there was a concern over possible increase in antibiotic use due to coinfections among COVID-19 patients in the community. Here, we evaluate the changes in nationwide use of broad-spectrum antibiotics during the COVID-19 epidemic in South Korea. METHODS: We obtained national reimbursement data on the prescription of antibiotics, including penicillin with ß-lactamase inhibitors, cephalosporins, fluoroquinolones, and macrolides. We examined the number of antibiotic prescriptions compared with the previous 3 years in the same period from August to July. To quantify the impact of the COVID-19 epidemic on antibiotic use, we developed a regression model adjusting for changes of viral acute respiratory tract infections (ARTIs), which are an important factor driving antibiotic use. RESULTS: During the COVID-19 epidemic in South Korea, the broad-spectrum antibiotic use dropped by 15%-55% compared to the previous 3 years. Overall reduction in antibiotic use adjusting for ARTIs was estimated to be 14%-30%, with a larger impact in children. CONCLUSIONS: Our study found that broad-spectrum antibiotic use was substantially reduced during the COVID-19 epidemic in South Korea. This reduction can be in part due to reduced ARTIs as a result of stringent public health interventions including social distancing measures.


Subject(s)
Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/epidemiology , Public Health , Respiratory Tract Infections/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antimicrobial Stewardship , Cephalosporins , Child , Child, Preschool , Female , Fluoroquinolones , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Macrolides , Male , Middle Aged , Pandemics , Penicillins , Republic of Korea/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Young Adult
4.
Curr Opin HIV AIDS ; 16(1): 25-35, 2021 01.
Article in English | MEDLINE | ID: covidwho-940835

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has caught the world unprepared, with no prevention or treatment strategies in place. In addition to the efforts to develop an effective vaccine, alternative approaches are essential to control this pandemic, which will most likely require multiple readily available solutions. Among them, monoclonal anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been isolated by multiple laboratories in record time facilitated by techniques that were first pioneered for HIV-1 antibody discovery. Here, we summarize how lessons learned from anti-HIV-1 antibody discovery have provided fundamental knowledge for the rapid development of anti-SARS-CoV-2 antibodies. RECENT FINDINGS: Research laboratories that successfully identified potent broadly neutralizing antibodies against HIV-1 have harnessed their antibody discovery techniques to isolate novel potent anti-SARS-CoV-2 antibodies, which have efficacy in animal models. These antibodies represent promising clinical candidates for treatment or prevention of COVID-19. SUMMARY: Passive transfer of antibodies is a promising approach when the elicitation of protective immune responses is difficult, as in the case of HIV-1 infection. Antibodies can also play a significant role in post-exposure prophylaxis, in high-risk populations that may not mount robust immune responses after vaccination, and in therapy. We provide a review of the recent approaches used for anti-SARS-CoV-2 antibody discovery and upcoming challenges in the field.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/virology , HIV Infections/immunology , HIV-1/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/administration & dosage , Biomedical Research/trends , Broadly Neutralizing Antibodies/administration & dosage , COVID-19/immunology , HIV Infections/virology , HIV-1/genetics , Humans , SARS-CoV-2/genetics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL